Smoothness Morrey spaces and their envelopes

Susana D. Moura

November 18, 2016

Abstract

The classical Morrey space $\mathcal{M}_{u,p}(\mathbb{R}^n)$, 0 , is defined to be the set of all locally*p*-integrable functions <math>f such that

$$||f| \mathcal{M}_{u,p}(\mathbb{R}^n)|| := \sup_{x \in \mathbb{R}^n, R > 0} R^{\frac{n}{u} - \frac{n}{p}} \left(\int_{B(x,R)} |f(y)|^p dy \right)^{\frac{1}{p}}$$

is finite, where B(x,R) denotes the ball centered at $x\in\mathbb{R}^n$ with radius R>0. They are part of the wider class of Morrey-Campanato spaces and can be considered as an extension of the scale of L_p spaces. Built upon these basic spaces Besov-Morrey spaces $\mathcal{N}^s_{u,p,q}$ and Triebel-Lizorkin-Morrey spaces $\mathcal{E}^s_{u,p,q}$ attracted some attention in the last years, in particular in connection with Navier-Stokes equations. Closely related to theses scales are the spaces of Besov type $B^{s,\tau}_{p,q}$ and Triebel-Lizorkin type $F^{s,\tau}_{p,q}$, $\tau\geq 0$, which coincide with their classical counterparts when $\tau=0$.

We present a survey on such different scales of smoothness spaces of Morrey type. We also introduce the general concept of growth and continuity envelope of a function space and determine the envelopes of the above mentioned spaces. In some cases a specific behaviour appears which is different from the "classical" situation in Besov or Triebel-Lizorkin spaces.

This talk is based on joint work with D.D. Haroske (Jena), L. Skrzypczak (Poznań), D. Yang (Beijing) and W. Yuan (Beijing).